
Model Predictive Control Toolbox™ 3
Reference

Alberto Bemporad
Manfred Morari
N. Lawrence Ricker

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Model Predictive Control Toolbox™ Reference

© COPYRIGHT 2005–2010 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)

Contents

Function Reference
1

General . 1-2

Creating MPC Controllers . 1-2

Data Extraction . 1-3

Conversions . 1-3

Analysis . 1-4

Controller Design . 1-4

QP Solver . 1-4

Simulink . 1-5

v

Functions – Alphabetical List

2

Block Reference
3

Object Reference

4
MPC Controller Object . 4-2
ManipulatedVariables . 4-3
OutputVariables . 4-4
DisturbanceVariables . 4-6
Weights . 4-6
Model . 4-9
Ts . 4-11
Optimizer . 4-11
PredictionHorizon . 4-12
ControlHorizon . 4-12
History . 4-12
Notes . 4-12
UserData . 4-12
MPCData . 4-13
Version . 4-13
Construction and Initialization . 4-13

MPC Simulation Options Object . 4-14

MPC State Object . 4-16

Index

vi Contents

1

Function Reference

General (p. 1-2)

Creating MPC Controllers (p. 1-2)

Data Extraction (p. 1-3)

Conversions (p. 1-3)

Analysis (p. 1-4)

Controller Design (p. 1-4)

QP Solver (p. 1-4)

Simulink (p. 1-5)

1 Function Reference

General
mpchelp MPC property and function help

mpcprops Provide help on MPC controller’s
properties

mpcverbosity Change toolbox verbosity level

Creating MPC Controllers
gpc2mpc Generate MPC controller using

generalized predictive controller
(GPC) settings

mpc Create MPC controller

mpcstate Define MPC controller state

set Set or modify MPC object properties

setestim Modify MPC object’s linear state
estimator

setindist Modify unmeasured input
disturbance model

setmpcdata Set private MPC data structure

setmpcsignals Set signal types in MPC plant model

setname Set I/O signal names in MPC
prediction model

setoutdist Modify unmeasured output
disturbance model

1-2

Data Extraction

Data Extraction
get MPC property values

getestim Model and gain for observer design

getindist Unmeasured input disturbance
model

getmpcdata Private MPC data structure

getname I/O signal names in MPC prediction
model

getoutdist Unmeasured output disturbance
model

sim Simulate closed-loop/open-loop
response to arbitrary reference and
disturbance signals

Conversions
d2d Change MPC controller’s sampling

time

pack Reduce size of MPC object in memory

ss Convert unconstrained MPC
controller to state-space linear form

tf Convert unconstrained MPC
controller to linear transfer function

zpk Convert unconstrained MPC
controller to zero/pole/gain form

1-3

1 Function Reference

Analysis
cloffset Compute MPC closed-loop DC

gain from output disturbances
to measured outputs assuming
constraints are inactive at steady
state

compare Compare two MPC objects

mpcmove Compute MPC control action

mpcsimopt MPC simulation options

plot Plot responses generated by MPC
simulations

sensitivity Compute effect of controller tuning
weights on performance

sim Simulate closed-loop/open-loop
response to arbitrary reference and
disturbance signals

trim Compute steady-state value of MPC
controller state for given inputs and
outputs

Controller Design
mpctool Start Model Predictive Controller

GUI

QP Solver
qpdantz Solve convex quadratic program

using Dantzig-Wolfe’s algorithm

1-4

Simulink

Simulink
mpclib MPC block library browser

1-5

1 Function Reference

1-6

2

Functions – Alphabetical
List

cloffset

Purpose Compute MPC closed-loop DC gain from output disturbances to
measured outputs assuming constraints are inactive at steady state

Syntax DCgain=cloffset(MPCobj)

Description The cloff function computes the DC gain from output disturbances to
measured outputs, assuming constraints are not active, based on the
feedback connection between Model.Plant and the linearized MPC
controller, as depicted below.

Computing the Effect of Output Disturbances

By superposition of effects, the gain is computed by zeroing references,
measured disturbances, and unmeasured input disturbances.

DCgain=cloffset(MPCobj) returns an nym-by-nym DC gain matrix
DCgain, where nym is the number of measured plant outputs. MPCobj
is the MPC object specifying the controller for which the closed-loop
gain is calculated. DCgain(i,j) represents the gain from an additive
(constant) disturbance on output j to measured output i. If row i
contains all zeros, there will be no steady-state offset on output i.

2-2

cloffset

Examples See misocloffset.m in mpcdemos.

See Also mpc, ss

2-3

compare

Purpose Compare two MPC objects

Syntax yesno=compare(MPC1,MPC2)

Description The compare function compares the contents of two MPC objects MPC1,
MPC2. If the design specifications (models, weights, horizons, etc.) are
identical, then yesno is equal to 1.

Note compare may return yesno=1 even if the two objects are not
identical. For instance, MPC1 may have been initialized while MPC2 may
have not, so that they may have different sizes in memory. In any case,
if yesno=1 the behavior of the two controllers will be identical.

See Also mpc, pack

2-4

d2d

Purpose Change MPC controller’s sampling time

Syntax MPCobj=d2d(MPCobj,ts)

Description The d2d function changes the sampling time of the MPC controller
MPCobj to ts. All models are sampled or resampled as soon as the QP
matrices must be computed, e.g., when sim or mpcmove are used.

See Also mpc, set

2-5

get

Purpose MPC property values

Syntax Value = get(MPCobj,'PropertyName')
Struct = get(MPCobj)
get(MPCobj)

Description Value = get(MPCobj,'PropertyName') returns the current value
of the property PropertyName of the MPC controller MPCobj. The
string 'PropertyName' can be the full property name (for example,
'UserData') or any unambiguous case-insensitive abbreviation (for
example, 'user'). You can specify any generic MPC property.

Struct = get(MPCobj) converts the MPC controller MPCobj into a
standard MATLAB® structure with the property names as field names
and the property values as field values.

get(MPCobj) without a left-side argument displays all properties of
MPCobj and their values.

Remark An alternative to the syntax

Value = get(MPCobj,'PropertyName')

is the structure-like referencing

Value = MPCobj.PropertyName

For example,

MPCobj.Ts
MPCobj.p

return the values of the sampling time and prediction horizon of the
MPC controller MPCobj.

See Also mpc, set

2-6

getestim

Purpose Model and gain for observer design

Syntax M=getestim(MPCobj)
[M,A,Cm]=getestim(MPCobj)
[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj)
[M,model,Index]=getestim(MPCobj,'sys')

Description M=getestim(MPCobj) extracts the estimator gain M used by
the MPC controller MPCobj for observer design. The observer
is based on the models specified in MPCobj.Model.Plant, in
MPCobj.Model.Disturbance, by the output disturbance model
(default is integrated white noise, see “Output Disturbance Model”
in the Model Predictive Control Toolbox™ User’s Guide), and by
MPCobj.Model.Noise.

The state estimator is based on the linear model (see “State Estimation”
in the Model Predictive Control Toolbox User’s Guide)

where v(k) are the measured disturbances, u(k) are the manipulated
plant inputs, ym(k) are the measured plant outputs, and x(k) is the
overall state vector collecting states of plant, unmeasured disturbance,
and measurement noise models.

The estimator used in the Model Predictive Control Toolbox software is
described in “State Estimation”. The estimator’s equations are

Predicted Output Computation:

ˆ ˆ ()y k k C x k k D v km m vm−() = −() +1 1

Measurement Update:

ˆ ˆ () ˆx k k x k k M y k y k km m() = −() + − −()()1 1

2-7

getestim

Time Update:

ˆ ˆ () ()x k k Ax k k B u k B v ku v+() = () + +1

By combining these three equations, the overall state observer is

ˆ ˆ () () ()x k k A LC x k k Ly k B u k B LD v km m u v vm+() = −() −() + + + −()1 1

where L=AM.

[M,A,Cm]=getestim(MPCobj) also returns matrices A,Cm used for
observer design. This includes plant model, disturbance model, noise
model, offsets. The extended state is

x=plant states; disturbance models states; noise model states]

[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj) retrieves the whole linear
system used for observer design.

[M,model,Index]=getestim(MPCobj,'sys') retrieves the overall
model used for observer design (specified in the Model field of the MPC
object) as an LTI state-space object, and optionally a structure Index
summarizing I/O signal types.

The extended input vector of model model is

u=[manipulated vars;measured disturbances; 1; noise exciting
disturbance model;noise exciting noise model]

Model model has an extra measured disturbance input v=1 used for
handling possible nonequilibrium nominal values (see “Offsets” in the
Model Predictive Control Toolbox User’s Guide)

Input, output, and state names and input/output groups are defined
for model model.

The structure Index has the fields detailed in the following table.

2-8

getestim

Field Name Description

ManipulatedVariables Indices of manipulated variables within
input vector

MeasuredDisturbances Indices of measured disturbances within
input vector (not including offset=1)

Offset Index of offset=1

WhiteNoise Indices of white noise signals within input
vector

MeasuredOutputs Indices of measured outputs within output
vector

UnmeasuredOutputs Indices of unmeasured outputs within
output vector

The model returned by getestim does not include the additional white
noise added on manipulated variables and measured disturbances
to ease the solvability of the Kalman filter design, as described in
Equation (2–6) the Model Predictive Control Toolbox User’s Guide.

See Also setestim, mpc, mpcstate

2-9

getindist

Purpose Unmeasured input disturbance model

Syntax model=getindist(MPCobj)

Description model=getindist(MPCobj) retrieves the linear discrete-time transfer
function used to model unmeasured input disturbances in the MPC
setup described by the MPC object MPCobj. Model model is an LTI object
with as many outputs as the number of unmeasured input disturbances,
and as many inputs as the number of white noise signals driving the
input disturbance model.

See “Model Used for State Estimation” in the Model Predictive Control
Toolbox User’s Guide for details about the overall model used in the
MPC algorithm for state estimation purposes.

See Also mpc, setindist, setestim, getestim, getoutdist

2-10

getmpcdata

Purpose Private MPC data structure

Syntax mpcdata=getmpcdata(MPCobj)

Description mpcdata=getmpcdata(MPCobj) returns the private field MPCData of the
MPC object MPCobj. Here, all internal QP matrices, models, estimator
gains are stored at initalization of the object. You can manually change
the private data structure using the setmpcdata command, although
you may only need this for very advanced use of Model Predictive
Control Toolbox software.

Note Changes to the data structure may easily lead to unpredictable
results.

See Also setmpcdata, set, get

2-11

getname

Purpose I/O signal names in MPC prediction model

Syntax name=getname(MPCobj,'input',I)
name=getname(MPCobj,'output',I)

Description name=getname(MPCobj,'input',I) returns the name of the
I-th input signal in variable name. This is equivalent to
name=MPCobj.Model.Plant. InputName{I}. The name property
is equal to the contents of the corresponding Name field of
MPCobj.DisturbanceVariables or MPCobj.ManipulatedVariables.

name=getname(MPCobj,'output',I) returns the name of the
I-th output signal in variable name. This is equivalent to
name=MPCobj.Model.Plant.OutputName{I}. The name property
is equal to the contents of the corresponding Name field of
MPCobj.OutputVariables.

See Also setname, mpc, set

2-12

getoutdist

Purpose Unmeasured output disturbance model

Syntax outdist=getoutdist(MPCobj)
[outdist,channels]=getoutdist(MPCobj)

Description outdist=getoutdist(MPCobj) retrieves the linear discrete-time
transfer function used to model output disturbances in the MPC setup
described by the MPC object MPCobj. Model outdist is an LTI object
with as many outputs as the number of measured + unmeasured
outputs, and as many inputs as the number of white noise signals
driving the output disturbance model.

See “Model Used for State Estimation” in the Model Predictive Control
Toolbox User’s Guide for details about the overall model used in the
MPC algorithm for state estimation purposes.

[outdist,channels]=getoutdist(MPCobj) also returns the
output channels where integrated white noise was added as
an output disturbance model. This is only meaninful when
the default output disturbance model is used, namely when
MPCobj.OutputVariables(i).Integrators is empty for all channels
i. The array channels is empty for user-provided output disturbance
models.

See Also mpc, setoutdist, setestim, getestim, getindist

2-13

gpc2mpc

Purpose Generate MPC controller using generalized predictive controller (GPC)
settings

Syntax mpc = gpc2mpc(plant)
gpcOptions = gpc2mpc
mpc = gpc2mpc(plant,gpcOptions)

Description mpc = gpc2mpc(plant) generates a single-input single-output MPC
controller with default GPC settings and sampling time of the plant,
plant. The GPC is a nonminimal state-space representation described
in [1]. plant is a discrete-time LTI model with sampling time greater
than 0.

gpcOptions = gpc2mpc creates a structure gpcOptions containing
default values of GPC settings.

mpc = gpc2mpc(plant,gpcOptions) generates an MPC controller
using the GPC settings in gpcOptions.

Tips • For plants with multiple inputs, only one input is the manipulated
variable, and the remaining inputs are measured disturbances in
feedforward compensation. The plant output is the measured output
of the MPC controller.

• Use the MPC controller with Model Predictive Control Toolbox
software for simulation and analysis of the closed-loop performance.

Input
Arguments

plant

Discrete-time LTI model with sampling time greater than 0.

gpcOptions

GPC settings, specified as a structure with the following fields.

2-14

gpc2mpc

N1 Starting interval in prediction horizon,
specified as a positive integer.
Default: 1.

N2 Last interval in prediction horizon,
specified as a positive integer greater
than N1.
Default: 10.

NU Control horizon, specified as a positive
integer less than the prediction horizon.
Default: 1.

Lam Penalty weight on changes in
manipulated variable, specified as
a positive integer greater than or equal
to 0.
Default: 0.

T Numerator of the GPC disturbance
model, specified as a row vector of
polynomial coefficients whose roots lie
within the unit circle.
Default: [1].

MVindex Index of the manipulated variable for
multi-input plants, specified as a positive
integer.
Default: 1.

Examples Design an MPC controller using GPC settings:

% Specify the plant described in Example 1.8 of [1].
G = tf(9.8*[1 -0.5 6.3],conv([1 0.6565],[1 -0.2366 0.1493]));

% Discretize the plant with sample time of 0.6 seconds.
Ts = 0.6;
Gd = c2d(G, Ts);

2-15

gpc2mpc

% Create a GPC settings structure.
GPCoptions = gpc2mpc;

% Specify the GPC settings described in example 4.11 of [1].
% Hu
GPCoptions.NU = 2;
% Hp
GPCoptions.N2 = 5;
% R
GPCoptions.Lam = 0;
GPCoptions.T = [1 -0.8];

% Convert GPC to an MPC controller.
mpc = gpc2mpc(Gd, GPCoptions);

% Simulate for 50 steps with unmeasured disturbance between
% steps 26 and 28, and reference signal of 0.
SimOptions = mpcsimopt(mpc);
SimOptions.UnmeasuredDisturbance = [zeros(25,1); ...
-0.1*ones(3,1); 0];
sim(mpc, 50, 0, SimOptions);

References [1] Maciejowski, J. M. Predictive Control with Constraints, Pearson
Education Ltd., 2002, pp. 133–142.

See Also “MPC Controller Object” on page 4-2

How To • “Model Predictive Control Problem Setup”

• “Designing Controllers Using the Design Tool GUI”

• “Designing Controllers Using the Command Line”

2-16

mpc

Purpose Create MPC controller

Syntax MPCobj=mpc(plant)
MPCobj=mpc(plant,ts)
MPCobj=mpc(plant,ts,p,m)
MPCobj=mpc(plant,ts,p,m,weights)
MPCobj=mpc(plant,ts,p,m,weights,MV,OV,DV)
MPCobj=mpc(models,ts,p,m,weights,MV,OV,DV)
MPCobj=mpc

Description MPCobj=mpc(plant) creates an MPC controller based on the
discrete-time model plant. The model can be specified either as an
LTI object, or as an object in System Identification Toolbox™ format
(IDMODEL object). See “Using Identified Models” in the Model
Predictive Control Toolbox User’s Guide.

MPCobj=mpc(plant,ts) also specifies the sampling time ts for the MPC
controller. A continuous-time plant is discretized with sampling time
ts. A discrete-time plant is resampled if its sampling time is different
than the controller’s sampling time ts. If plant is a discrete-time model
with unspecified sampling time, namely plant.ts=-1, then Model
Predictive Control Toolbox software assumes that the plant is sampled
with the controller’s sampling time ts.

MPCobj=mpc(plant,ts,p,m) also specifies prediction horizon p and
control horizon m.

MPCobj=mpc(plant,ts,p,m,weights)also specifies the structure
weights of input, input increments, and output weights (see “Weights”
on page 4-6).

MPCobj=mpc(plant,ts,p,m,weights,MV,OV,DV) also specifies
limits on manipulated variables (MV) and output variables (OV), as
well as equal concern relaxation values, units, etc. Names and
units of input disturbances can be also specified in the optional
input DV. The fields of structures MV, OV, and DV are described in
“ManipulatedVariables” on page 4-3, in “OutputVariables” on page 4-4,
and in “DisturbanceVariables” on page 4-6, respectively).

2-17

mpc

MPCobj=mpc(models,ts,p,m,weights,MV,OV,DV) where model is
a structure containing models for plant, unmeasured disturbances,
measured disturbances, and nominal linearization values, as described
in “Model” on page 4-9.

MPCobj=mpc returns an empty MPC object.

Note Other MPC properties are specified by using
set(MPCobj,Property1, Value1,Property2,Value2,...)
or MPCobj.Property=Value.

Examples Define an MPC controller based on the transfer function model
s+1/(s2+2s), with sampling time Ts=0.1 s, and satisfying the input
constraint -1≤ u ≤1:

Ts=.1; %Sampling time
MV=struct('Min',-1,'Max',1);
p=20;
m=3;

mpc1=mpc(tf([1 1],[1 2 0]),Ts,p,m,[],MV);

See Also set, get

2-18

mpchelp

Purpose MPC property and function help

Syntax mpchelp
mpchelp name
out=mpchelp(`name')
mpchelp(obj)
mpchelp(obj,'name')
out=mpchelp(obj,'name')

Description mpchelp provides a complete listing of Model Predictive Control Toolbox
help.

mpchelp name provides online help for the function or property name.

out=mpchelp(`name') returns the help text in string, out.

mpchelp(obj) displays a complete listing of functions and properties
for the MPC object, obj, along with the online help for the object’s
constructor.

mpchelp(obj,'name') displays the help for function or property, name,
for the MPC object, obj.

out=mpchelp(obj,'name') returns the help text in string, out.

Examples To get help on the MPC method getoutdist, you can type:

mpchelp getoutdist

See Also mpcprops

2-19

mpcmove

Purpose Compute MPC control action

Syntax u=mpcmove(MPCobj,x,ym,r,v)
[u,Info]=mpcmove(MPCobj,x,ym,r,v)

Description u=mpcmove(MPCobj,x,ym,r,v) computes the current input move u(k),
given the current estimated extended state x(k), the vector of measured
outputs ym(k), the reference vector r(k), and the measured disturbance
vector v(k), by solving the quadratic programming problem based on the
parameters contained in the MPC controller MPCobj.

x is an mpcstate object. It is updated by mpcmove through the internal
state observer based on the extended prediction model (see getestim
for details). A default initial state x for the first call at time k=0 can
be simply defined as:

x=mpcstate(MPCobj)

[u,Info]=mpcmove(MPCobj,x,ym,r,v) also returns the structure Info
containing details about the optimal control calculations. Info has
the following fields.

Field Name Description

Uopt Optimal input trajectory over the prediction
horizon, returned as a p-by-nu dimensional array.

Yopt Optimal output sequence over the prediction
horizon, returned as a p-by-ny dimensional array.

Xopt Optimal state sequence over the prediction horizon,
returned as a p-by-nx dimensional array, where
nx=total number of states of the extended state
vector.

Topt Prediction time vector (0:p-1)'.

Slack Value of the ECR slack variable ε at optimum.

2-20

mpcmove

Field Name Description

Iterations Number of iterations needed by the QP solver.

QPCode Exit code of the QP solver.

To plot the optimal input trajectory, type:

plot(Topt,Uopt)

The optimal output and state trajectories can be plotted similarly. The
input, output, and state sequences Uopt, Yopt, Xopt, Topt correspond
to the predicted open-loop optimal control trajectories solving the
optimization problem described in “Optimization Problem” in the Model
Predictive Control Toolbox User’s Guide. The optimal trajectories might
also help understand the closed-loop behavior. For instance, constraints
that are active in the open-loop optimal trajectory only at late steps of
the prediction horizon might not be active at all in the closed-loop MPC
trajectories. The sequence of optimal manipulated variable increments
can be retrieved from MPCobj.MPCData.MPCstruct.optimalseq.

QPCode returns either 'feasible', 'infeasible' or 'unreliable'
(the latter occurs when the QP solver terminates because the maximum
number of iterations MPCobj.Optimizer.MaxIter is exceeded; see
qpdantz). When QPCode='infeasible', then u is obtained by shifting
the previous optimal sequence of manipulated variable rates (stored
in MPCobj.MPCData.MPCstruct.optimalseq inside the MPC object
MPCobj), and summing the first entry of this sequence to the previous
vector of manipulated moves. You may set up different backup
strategies for handling infeasible situations by discarding u and
replacing it with a different emergency decision-variable vector.

r/v can be either a sample (no future reference/disturbance known
in advance) or a sequence of samples (when a preview / look-ahead
/ anticipative effect is desired). In the latter case, they must be an
array with as many rows as p and as many columns as the number of
outputs/measured disturbances, respectively. If the number of rows is
smaller than p, the last sample is extended constantly over the horizon,
to obtain the correct size.

2-21

mpcmove

The default for y and r is MPCobj.Model.Nominal.Y. The default for
v is obtained from MPCobj.Model.Nominal.U. The default for x is
mpcstate (MPCobj,MPCobj.Model.Nominal.X,0,0,U0) where U0 are the
entries from MPCobj.Model.Nominal.U corresponding to manipulated
variables.

To bypass the MPC Controller block’s internal estimator and use your
own state observer to update the MPC state yourself, you can for
instance use the syntax:

xp=x.plant; xd=x.dist; xn=x.noise; % Save current state
u=mpcmove(MPCobj,x,ym,r,v); % x will be updated
% Now call to your state update function:
[xp,xd,xn]=my_estimator(xp,xd,xn,ym); % States get updated
x.plant=xp;x.dist=xd;x.noise=xn;

Examples Model predictive control of a multi-input single-output system (see the
demo MPC Control of a Multi-Input Single-Output System). The system
has three inputs (one manipulated variable, one measured disturbance,
one unmeasured disturbance) and one output.

% Open-loop system parameters

% True plant and true initial state
sys=ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));
x0=[0 0 0 0 0]';

% MPC object setup

Ts=.2; % sampling time

% Define type of input signals
sys.InputGroup=struct('Manipulated',1,'Measured',2,'Unmeasured',3);

% Define constraints on manipulated variable
MV=struct('Min',0,'Max',1);

2-22

mpcmove

Model=[]; % Reset structure Model
Model.Plant=sys;
% Integrator driven by white noise with variance=1000
Model.Disturbance=tf(sqrt(1000),[1 0]);

p=[]; % Prediction horizon (take default one)
m=3; % Control horizon
weights=[]; % Default value for weights

MPCobj=mpc(Model,Ts,p,m,weights,MV);

% Simulate closed loop system using MPCMOVE

Tstop=30; %Simulation time

xmpc=mpcstate(MPCobj); % Initial state of MPC controller
x=x0; % Initial state of Plant
r=1; % Output reference trajectory

% State-space matrices of Plant model
[A,B,C,D]=ssdata(c2d(sys,Ts));

YY=[];XX=[];RR=[];
for t=0:round(Tstop/Ts)-1,

XX=[XX,x];

% Define measured disturbance signal
v=0;
if t*Ts>=10, v=1; end

% Define unmeasured disturbance signal
d=0;
if t*Ts>=20, d=-0.5; end

% Plant equations: output update
% (note: no feedrthrough from MV to Y, D(:,1)=0)
y=C*x+D(:,2)*v+D(:,3)*d;

2-23

mpcmove

YY=[YY,y];

% Compute MPC law
u=mpcmove(MPCobj,xmpc,y,r,v);

% Plant equations: state update
x=A*x+B(:,1)*u+B(:,2)*v+B(:,3)*d;

end

% Plot results
plot(0:Ts:Tstop-Ts,YY);grid

See Also mpc, mpcstate, sim, setestim, getestim

2-24

mpcprops

Purpose Provide help on MPC controller’s properties

Syntax mpcprops

Description mpcprops displays details on the generic properties of MPC controllers.
It provides a complete list of all the fields of MPC objects with a brief
description of each field and the corresponding default values.

See Also set, get, mpchelp

2-25

mpcsimopt

Purpose MPC simulation options

Syntax SimOptions=mpcsimopt(mpcobj)

Description The purpose of mpcsimopt is to create an object SimOptions of class
@mpcsimopt for specifying additional parameters for simulation with
sim.

SimOptions=mpcsimopt(mpcobj) creates an empty object SimOptions
which is compatible with the MPC object mpcobj. The fields of the object
SimOptions and their description are reported in MPC Simulation
Options Properties on page 4-14.

Examples We want to simulate the MPC control of a multi-input multi-output
(MIMO) system under predicted / actual plant model mismatch (demo
simmismatch.m). The system has two manipulated variables, two
unmeasured disturbances, and two measured outputs.

% Open-loop system parameters
p1 = tf(1,[1 2 1])*[1 1; 0 1];
plant = ss([p1 p1]);

% Define I/O types
plant=setmpcsignals(plant,'MV',[1 2],'UD',[3 4]);

% Define I/O names (optional)
set(plant,'InputName',{'mv1','mv2','umd3','umd4'});

% Model for unmeasured input disturbances
distModel = eye(2,2)*ss(-.5,1,1,0);

% Create MPC object
mpcobj = mpc(plant,1,40,2);
mpcobj.Model.Disturbance = distModel;

% Closed-loop MPC simulation with model mismatch and unforeseen
% unmeasured disturbance inputs

2-26

mpcsimopt

% Define plant model generating the data
p2 = tf(1.5,[0.1 1 2 1])*[1 1; 0 1];
psim = ss([p2 p2 tf(1,[1 1])*[0;1]]);
psim=setmpcsignals(psim,'MV',[1 2],'UD',[3 4 5]);

% Closed-loop simulation
dist=ones(1,3); % Unmeasured disturbance trajectory
refs=[1 2]; % Output reference trajectory
Tf=100; % Total number of simulation steps

options=mpcsimopt(mpcobj);
options.unmeas=dist;
options.model=psim;

sim(mpcobj,Tf,refs,options);

See Also sim

2-27

mpcstate

Purpose Define MPC controller state

Syntax xmpc=mpcstate(MPCobj,xp,xd,xn,u)
xmpc=mpcstate(MPCobj)

Description xmpc=mpcstate(MPCobj,xp,xd,xn,u) defines an mpcstate object for
state estimation and optimization in an MPC control algorithm based
on the MPC object MPCobj. The state of an MPC controller contains
the estimates of the states x(k), xd(k), xm(k), where x(k) is the state
of the plant model, xd(k) is the overall state of the input and output
disturbance model, xm(k) is the state of the measurement noise model,
and the value of the last vector u(k-1) of manipulated variables. The
overall state is updated from the measured output ym(k) by a linear
state observer (see “State Observer” in the Model Predictive Control
Toolbox User’s Guide).

xmpc=mpcstate(MPCobj) returns a default extended initial state that is
compatible with the MPC controller MPCobj. Such a default state has
plant state and previous input initialized at nominal values, and the
states of the disturbance and noise models at zero.

Note that mpcstate objects are updated by mpcmove through the
internal state observer based on the extended prediction model.

See Also getoutdist, setoutdist, setindist, getestim, setestim, ss, mpcmove

2-28

mpctool

Purpose Start Model Predictive Controller GUI

Syntax mpctool
mpctool(MPCobj)
mpctool(MPCobj,'objname')
mpctool(MPCobj1, MPCobj2, ...)
mpctool(MPCobj1, 'objname1', MPCobj2, 'objname2', ...)
mpctool('TaskName')

Description mpctool starts the GUI. For more information about designing and
testing model predictive controllers, see “Reference for the Design Tool
GUI” in the Model Predictive Control Toolbox User’s Guide.

mpctool(MPCobj) starts the GUI and loads MPCobj, which is an existing
controller object.

mpctool(MPCobj,'objname') assigns objname (specified as a string) to
the controller you are loading into the GUI. If you do not specify a name,
the GUI uses the name of the variable that stores the controller object.

mpctool(MPCobj1, MPCobj2, ...) loads the specified list of
controllers.

mpctool(MPCobj1, 'objname1', MPCobj2, 'objname2', ...) loads
the specified list of controllers and assigns each controller the specified
name.

mpctool('TaskName') starts the GUI and creates a new Model
Predictive Control design task with the name specified by the string
'TaskName'.

See Also mpc

2-29

mpcverbosity

Purpose Change toolbox verbosity level

Syntax mpcverbosity on
mpcverbosity off
mpcverbosity

Description mpcverbosity on enables messages displaying default operations
taken by Model Predictive Control Toolbox software during the creation
and manipulation of model predictive control objects.

mpcverbosity off turns messages off.

mpcverbosity just shows the verbosity status.

By default, messages are turned on.

See also “Construction and Initialization” on page 4-13 .

See Also mpc

2-30

pack

Purpose Reduce size of MPC object in memory

Syntax pack(MPCobj)

Description pack(MPCobj) cleans up information build at initialization and stored
in the MPCData field of the MPC object MPCobj. This reduces the amount
of bytes in memory required to store the MPC object. For MPC objects
based on large prediction models, it is recommended to pack the object
before saving the object to file, in order to minimize the size of the file.

See Also mpc, getmpcdata, setmpcdata, compare

2-31

plot

Purpose Plot responses generated by MPC simulations

Syntax plot(MPCobj,t,y,r,u,v,d)

Description plot(MPCobj,t,y,r,u,v,d) plots the results of a simulation based on
the MPC object MPCobj. t is a vector of length Nt of time values, y is
a matrix of output responses of size [Nt,Ny] where Ny is the number of
outputs, r is a matrix of setpoints and has the same size as y, u is a
matrix of manipulated variable inputs of size [Nt,Nu] where Nu is the
number of manipulated variables, v is a matrix of measured disturbance
inputs of size [Nt,Nv] where Nv is the number of measured disturbance
inputs, and d is a matrix of unmeasured disturbance inputs of size
[Nt,Nd] where Nd is the number of unmeasured disturbances input.

See Also sim, mpc

2-32

qpdantz

Purpose Solve convex quadratic program using Dantzig-Wolfe’s algorithm

Syntax [xopt,lambda,how]=qpdantz(H,f,A,b,xmin)
[xopt,lambda,how]=qpdantz(H,f,A,b,xmin,maxiter)

Description [xopt,lambda,how]=qpdantz(H,f,A,b,xmin) solves the convex
quadratic program

using Dantzig-Wolfe’s active set method [2]. The Hessian matrix H
should be positive definite. By default, xmin=1e-5. Vector xopt is the
optimizer. Vector lambda contains the optimal dual variables (Lagrange
multipliers).

The exit flag how is either 'feasible', 'infeasible' or 'unreliable'.
The latter occurs when the solver terminates because the maximum
number maxiter of allowed iterations was exceeded.

The solver is implemented in qpsolver.mex. Dantzig-Wolfe’s algorithm
uses the direction of the largest gradient, and the optimum is usually
found after about n+q iterations, where n=dim(x) is the number of
optimization variables, and q=dim(b) is the number of constraints.
More than 3(n+q) iterations are rarely required (see Chapter 7.3 of [2]).

Examples Solve a random QP problem using quadprog from the Optimization
Toolbox™ software and qpdantz.

n=50; % Number of vars

H=rand(n,n);H=H'*H;H=(H+H')/2;
f=rand(n,1);
A=[eye(n);-eye(n)];
b=[rand(n,1);rand(n,1)];

x1=quadprog(H,f,A,b);

2-33

qpdantz

[x2,how]=qpdantz(H,f,A,b,-100*ones(n,1));

Bibliography [1] Fletcher, R. Practical Methods of Optimization, John Wiley & Sons,
Chichester, UK, 1987.

[2] Dantzig, G.B. Linear Programming and Extensions, Princeton
University Press, Princeton, 1963.

2-34

sensitivity

Purpose Compute effect of controller tuning weights on performance

Syntax [J, sens] = sensitivity(MPCobj, PerfFunc, PerfWeights, Tstop,
r, v, simopt, utarget)

[J, sens] = sensitivity(MPCobj,'perf_fun',param1,param2,...)

Description The sensitivity function is a controller tuning aid. J specifies a
scalar performance metric. sensitivity computes J and its partial
derivatives with respect to the controller tuning weights. These
sensitivities suggest tuning weight adjustments that should improve
performance, i.e., reduce J.

[J, sens] = sensitivity(MPCobj, PerfFunc, PerfWeights,
Tstop, r, v, simopt, utarget) calculates the scalar performance
metric, J, and sensitivities, sens, for the controller defined by the MPC
controller object MPCobj.

PerfFunc must be one of the following strings:

'ISE' (integral squared error) for which the performance metric is

'IAE' (integral absolute error) for which the performance metric is

'ITSE' (integral of time-weighted squared error) for which the
performance metric is

2-35

sensitivity

'ITAE' (integral of time-weighted absolute error) for which the
performance metric is

In the above expressions ny is the number of controlled outputs and nu
is the number of manipulated variables. is the difference between
output j and its setpoint (or reference) value at time interval i. is
the difference between manipulated variable j and its target at time
interval i.

The w parameters are non-negative performance weights defined by the
structure PerfWeights, which contains the following fields:

'OutputVariables': 1 by ny vector containing the values

'ManipulatedVariables': 1 by nu vector containing the values

'ManipulatedVariablesRate': 1 by nu vector containing the
values

If PerfWeights is unspecified, it defaults to the corresponding weights
in MPCobj. In general, however, the performance weights and those
used in the controller have different purposes and should be defined
accordingly.

Inputs Tstop, r, v, and simopt define the simulation scenario used to
evaluate performance. See sim for details.

Tstop is the integer number of controller sampling intervals to be
simulated. The final time for the simulations will be , where
is the controller sampling interval specified in MPCobj.

The optional input utarget is a vector of nu manipulated variable

targets. Their defaults are zero. is the change in manipulated
variable j and its target at time interval i.

2-36

sensitivity

The structure variable sens contains the computed sensitivities (partial
derivatives of J with respect to the MPCobj tuning weights.) Its fields are

'OutputVariables' (1 by ny) sensitivities with respect to
MPCobj.Weights.OutputVariables

'ManipulatedVariables' (1 by nu) sensitivities with respect to
MPCobj.Weights.ManipulatedVariables

'ManipulatedVariablesRate' (1 by nu) sensitivities with respect to
MPCobj.Weights.ManipulatedVariablesRate

See “Weights” on page 4-6 for details on the tuning weights contained
in MPCobj.

[J, sens] =
sensitivity(MPCobj,'perf_fun',param1,param2,...) employs a
user-defined performance function ’perf_fun’ to define J. Its
function definition must be in the form

function J = perf_fun(MPCobj, param1, param2, ...)

i.e., it must compute J for the given controller and optional parameters
param1, param2, ... and it must be on the MATLAB path.

Example Suppose variable MPCobj contains a default controller definition for a
plant with two controlled outputs, three manipulated variables, and no
measured disturbances. Compute its performance and sensitivities
as follows:

PerfFunc = 'IAE';
PerfWts.OutputVariables = [1 0.5];
PerfWts.ManipulatedVariables = zeros(1,3);
PerfWts.ManipulatedVariablesRate = zeros(1,3);
Tstop = 20;
r = [1 0];
v = [];
simopt = mpcsimopt;
utarget = zeros(1,3);
[J, sens] = sensitivity(MPCobj, PerfFunc, PerfWts, Tstop, ...

2-37

sensitivity

r, v, simopt, utarget)

The simulation scenario in the above example uses a constant r = 1 for
output 1 and r = 0 for output 2. In other words, the scenario is a unit
step in the output 1 setpoint.

See Also mpc, sim

2-38

set

Purpose Set or modify MPC object properties

Syntax set(MPCobj,'Property',Value)
set(MPCobj,'Property1',Value1,'Property2',Value2,...)
set(MPCobj,'Property')
set(sys)

Description The set function is used to set or modify the properties of an MPC
controller (see “MPC Controller Object” on page 4-2 for background
on MPC properties). Like its Handle Graphics® counterpart, set uses
property name/property value pairs to update property values.

set(MPCobj,'Property',Value) assigns the value Value to the
property of the MPC controller MPCobj specified by the string
'Property'. This string can be the full property name (for example,
'UserData') or any unambiguous case-insensitive abbreviation (for
example, 'user').

set(MPCobj,'Property1',Value1,'Property2',Value2,...) sets
multiple property values with a single statement. Each property
name/property value pair updates one particular property.

set(MPCobj,'Property') displays admissible values for the property
specified by 'Property'. See “MPC Controller Object” on page 4-2 for
an overview of legitimate MPC property values.

set(sys) displays all assignable properties of sys and their admissible
values.

See Also mpc, get

2-39

setestim

Purpose Modify MPC object’s linear state estimator

Syntax setestim(MPCobj,M)
setestim(MPCobj,'default')

Description The setestim function modifies the linear estimator gain of an MPC
object. The state estimator is based on the linear model (see “State
Estimation” in the Model Predictive Control Toolbox User’s Guide.)

where v(k) are the measured disturbances, u(k) are the manipulated
plant inputs, ym(k) are the measured plant outputs, and x(k) is the
overall state vector collecting states of plant, unmeasured disturbance,
and measurement noise models. The order of the states in x is the
following: plant states; disturbance models states; noise model states.

setestim(MPCobj,M), where MPCobj is an MPC object, changes the
default Kalman estimator gain stored in MPCobj to that specified by
matrix M.

setestim(MPCobj,'default') restores the default Kalman gain.

The estimator used in Model Predictive Control Toolbox software is
described in “State Estimation” in the Model Predictive Control Toolbox
User’s Guide. The estimator’s equations are as follows.

Predicted Output Computation:

Measurement Update:

2-40

setestim

Time Update:

By combining these three equations, the overall state observer is

where L=AM.

Note The estimator gain M has the same meaning as the gain M in
function DKALMAN in Control System Toolbox™ software.

Matrices A, Bu, Bv, Cm, Dvm can be retrieved using getestim as follows:

[M,A,Cm,Bu,Bv,Dvm]=getestim(MPCobj)

As an alternative, they can be retrieved from the internal structure
MPCobj.MPCData.MPCstruct under the fields A,Bu,Bv,Cm,Dvm (see
getmpcdata).

Examples To design an estimator by pole placement, you can use the commands
assuming that the linear system AM=L is solvable.

[M,A,Cm]=getestim(MPCobj);
L=place(A',Cm',observer_poles)';
M=A\L;
setestim(MPCobj,M);

2-41

setestim

Note The pair (A,Cm) describing the overall state-space realization of
the combination of plant and disturbance models must be observable
for the state estimation design to succeed. Observability is checked
in Model Predictive Control Toolbox software at two levels: (1)
observability of the plant model is checked at construction of the MPC
object, provided that the model of the plant is given in state-space
form; (2) observability of the overall extended model is checked at
initialization of the MPC object, after all models have been converted to
discrete-time, delay-free, state-space form and combined together.

See Also getestim, mpc, mpcstate

2-42

setindist

Purpose Modify unmeasured input disturbance model

Syntax setindist(MPCobj,'integrators')
setindist(MPCobj,'model',model

Description setindist(MPCobj,'integrators') imposes the default disturbance
model for unmeasured inputs, that is, for each unmeasured input
disturbance channel, an integrator is added unless there is a violation
of observability, otherwise the input is treated as white noise with unit
variance (this is equivalent to MPCobj.Model.Disturbance=[]).

setindist(MPCobj,'model',model) sets the input disturbance model
to model (this is equivalent to MPCobj.Model.Disturbance=model).

See Also mpc, getindist, setestim, getestim, setoutdist

2-43

setmpcdata

Purpose Set private MPC data structure

Syntax setmpcdata(MPCobj,mpcdata)

Description setmpcdata(MPCobj,mpcdata) changes the private field MPCData of the
MPC object MPCobj, where all internal QP matrices, models, estimator
gains are stored at initalization of the object. You may only need this
for very advanced use of Model Predictive Control Toolbox software.

Note Changes to the data structure may easily lead to unpredictable
results.

See Also getmpcdata, set, get, pack

2-44

setmpcsignals

Purpose Set signal types in MPC plant model

Syntax P=setmpcsignals(P,SignalType1,Channels1,SignalType2,Channels2,...)

Description The purpose of setmpcsignals is to set I/O channels of the MPC
plant model P. P must be an LTI object. Valid signal types, their
abbreviations, and the channel type they refer to are listed below.

Signal Type Abbreviation Channel

Manipulated MV Input

MeasuredDisturbances MD Input

UnmeasuredDisturbances UD Input

MeasuredOutputs MO Output

UnmeasuredOutputs UO Output

Unambiguous abbreviations of signal types are also accepted.

P=setmpcsignals(P) sets channel assignments to default, namely all
inputs are manipulated variables (MVs), all outputs are measured
outputs (MOs). More generally, input signals that are not explicitly
assigned are assumed to be MVs, while unassigned output signals are
considered as MOs.

Examples We want to define an MPC object based on the LTI discrete-time plant
model sys with four inputs and three outputs. The first and second
input are measured disturbances, the third input is an unmeasured
disturbance, the fourth input is a manipulated variable (default), the
second output is an unmeasured, all other outputs are measured.

sys=setmpcsignals(sys,'MD',[1 2],'UD',[3],'UO',[2]);
mpc1=mpc(sys);

2-45

setmpcsignals

Note When using setmpcsignals to modify an existing MPC object,
be sure that the fields Weights, MV, OV, DV, Model.Noise, and
Model.Disturbance are consistent with the new I/O signal types.

See Also mpc, set

2-46

setname

Purpose Set I/O signal names in MPC prediction model

Syntax setname(MPCobj,'input',I,name)
setname(MPCobj,'output',I,name)

Description setname(MPCobj,'input',I,name) changes the name
of the I-th input signal to name. This is equivalent to
MPCobj.Model.Plant.InputName{I}=name. Note that setname also
updates the read-only Name fields of MPCobj.DisturbanceVariables
and MPCobj.ManipulatedVariables.

setname(MPCobj,'output',I,name) changes the name
of the I-th output signal to name. This is equivalent to
MPCobj.Model.Plant.OutputName{I} =name. Note that setname also
updates the read-only Name field of MPCobj.OutputVariables.

Note The Name properties of ManipulatedVariables,
OutputVariables, and DisturbanceVariables are read-only. You
must use setname to assign signal names, or equivalently modify the
Model.Plant.InputName and Model.Plant.OutputName properties
of the MPC object.

See Also getname, mpc, set

2-47

setoutdist

Purpose Modify unmeasured output disturbance model

Syntax setoutdist(MPCobj,'integrators')
setoutdist(MPCobj,'remove',channels)
setoutdist(MPCobj,'model',model

Description setoutdist(MPCobj,'integrators') specifies the default
method output disturbance model, based on the specs
stored in MPCobj.OutputVariables.Integrator and
MPCobj.Weights.OutputVariables. Output integrators are added
according to the following rules:

1 Outputs are ordered by decreasing output weight (in case of
time-varying weights, the sum of the absolute values over time is
considered for each output channel. In case of equal output weight,
the order within the output vector is followed).

2 By following such order, an output integrator is added per
measured outputs, unless there is a violation of observability or the
corresponding value in MPCobj.OutputVariables.Integrator is
zero. A warning message is given when an integrator is added on
an unmeasured output channel.

setoutdist(MPCobj,'remove',channels) removes integrators from
the output channels specified in vector channels. This corresponds
to setting MPCobj.OutputVariables(channels).Integrator=0. The
default for channels is (1:ny), where ny is the total number of outputs,
that is, all output integrators are removed.

setoutdist(MPCobj,'model',model) replaces the array
of output integrators designed by default according to
MPCobj.OutputVariables.Integrator with the LTI
model model. The model must have ny outputs. If no
model is specified, then the default model based on the
specs stored in MPCobj.OutputVariables.Integrator
and MPCobj.Weights.OutputVariables is used (same as
setoutdist(MPCobj, 'integrators').

2-48

setoutdist

See Also mpc, getestim, setestim, setoutdist, setindist

2-49

sim

Purpose Simulate closed-loop/open-loop response to arbitrary reference and
disturbance signals

Syntax sim(MPCobj,T,r)
sim(MPCobj,T,r,v)
sim(MPCobj,T,r,SimOptions) or sim(MPCobj,T,r,v,SimOptions)
[y,t,u,xp,xmpc,SimOptions]=sim(MPCobj,T,...)

Description The purpose of sim is to simulate the MPC controller in closed loop with
a linear time-invariant model, which, by default, is the plant model
contained in MPCobj.Model.Plant. As an alternative, sim can simulate
the open-loop behavior of the model of the plant, or the closed-loop
behavior in the presence of a model mismatch between the prediction
plant model and the model of the process generating the output data.

sim(MPCobj,T,r) simulates the closed-loop system formed by the plant
model specified in MPCobj.Model.Plant and by the MPC controller
specified by the MPC object MPCobj, and plots the simulation results. T
is the number of simulation steps. r is the reference signal array with
as many columns as the number of output variables.

sim(MPCobj,T,r,v) also specifies the measured disturbance signal v,
that has as many columns as the number of measured disturbances.

Note The last sample of r/v is extended constantly over the simulation
horizon, to obtain the correct size.

sim(MPCobj,T,r,SimOptions) or sim(MPCobj,T,r,v,SimOptions)
specifies the simulation options object SimOptions, such as initial
states, input/output noise and unmeasured disturbances, plant
mismatch, etc. See mpcsimopt for details.

Without output arguments, sim automatically plots input and output
trajectories.

[y,t,u,xp,xmpc,SimOptions]=sim(MPCobj,T,...) instead of plotting
closed-loop trajectories returns the sequence of plant outputs y, the

2-50

sim

time sequence t (equally spaced by MPCobj.Ts), the sequence u of
manipulated variables generated by the MPC controller, the sequence
xp of states of the model of the plant used for simulation, the sequence
xmpc of states of the MPC controller (provided by the state observer),
and the options object SimOptions used for the simulation.

The descriptions of the input arguments and their default values are
shown in the table below.

Input
Argument Description Default

MPCobj MPC object specifying the
parameters of the MPC
control law

None

T Number of simulation
steps

Largest row-size of
r,v,d,n

r Reference signal MPCobj.Model.Nominal.Y

v Measured disturbance
signal

Entries from
MPCobj.Model.Nominal.U

SimOptions Object of class @mpcsimopt
containing the simulation
parameters (See
mpcsimopt)

[]

r is an array with as many columns as outputs, v is an array with as
many columns as measured disturbances. The last sample of r/v/d/n is
extended constantly over the horizon, to obtain the correct size.

The output arguments of sim are detailed below.

Output
Argument Description

y Sequence of controlled plant outputs (without noise
added on measured ones)

t Time sequence (equally spaced by MPCobj.Ts)

2-51

sim

Output
Argument Description

u Sequence of manipulated variables generated by MPC

xp Sequence of states of plant model (from Model or
SimOptions.Model)

xmpc Sequence of states of MPC controller (estimates of the
extended state). This is a structure with the same
fields as the mpcstate object.

Examples We want to simulate the MPC control of a multi-input single-output
system (the same model as in demo misosim.m). The system has one
manipulated variable, one measured disturbance, one unmeasured
disturbance, and one output.

%Plant model and initial state
sys=ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));

% MPC object setup
Ts=.2; % sampling time
sysd=c2d(sys,Ts); % prediction model

% Define type of input signals
sysd=setmpcsignals(model,'MV',1,'MD',2,'UD',3);

MPCobj=mpc(sysd); % Default weights and horizons

% Define constraints on manipulated variable
MPCobj.MV=struct('Min',0,'Max',1);

Tstop=30; % Simulation time

Tf=round(Tstop/Ts); % Number of simulation steps
r=ones(Tf,1); % Reference trajectory
v=[zeros(Tf/3,1);ones(2*Tf/3,1)]; % Measured dist. trajectory
sim(MPCobj,Tf,r,v);

2-52

sim

See Also mpcsimopt, mpc, mpcmove

2-53

size

Purpose Display model output/input/disturbance dimensions

Syntax sizes=size(MPCobj)

Description sizes=size(MPCobj) returns the row vector sizes = [nym nu nyu nv
nd] associated with the MPC object MPCobj, where nym is the number
of measured controlled outputs, nu is the number of manipulated
inputs, nyu is the number of unmeasured controlled outputs, nv is the
number of measured disturbances, and nd is the number of unmeasured
disturbances.

size(MPCobj) by itself makes a nice display.

See Also mpc, set

2-54

ss

Purpose Convert unconstrained MPC controller to state-space linear form

Syntax sys=ss(MPCobj)
[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj)
[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj,ref_preview,
md_preview,name_flag)

Description The ss utility returns the linear controller sys as an LTI system in ss
form corresponding to the MPC controller MPCobj when the constraints
are not active. The purpose is to use the linear equivalent control in
Control System Toolbox software for sensitivity analysis and other
linear analysis.

sys=ss(MPCobj) returns the linear discrete-time dynamic controller
sys

where ym is the vector of measured outputs of the plant, and u is the
vector of manipulated variables. The sampling time of controller sys is
MPCobj.Ts.

[sys,Br,Dr,Bv,Dv,Boff,Doff,But,Dut]=ss(MPCobj) returns the
linearized MPC controller in its full version, that has the following
structure

Note Vector x includes the states of the observer
(plant+disturbance+noise model states) and the previous
manipulated variable u(k-1).

2-55

ss

In the general case of nonzero offsets, ym (as well as r, v, utarget)
must be interpreted as the difference between the vector and the
corresponding offset. Vectors Boff, Doff are constant terms due
to nonzero offsets, in particular they are nonzero if and only if
MPCobj.Model.Nominal.DX is nonzero (continuous-time prediction
models), or MPCobj.Model.Nominal.Dx-MPCobj.Model.Nominal.X is
nonzero (discrete-time prediction models). Note that when Nominal.X is
an equilibrium state, Boff, Doff are zero.

Only the following fields of MPCobj are used when computing the
state-space model: Model, PredictionHorizon, ControlHorizon, Ts,
Weights.

[sys,...]=ss(MPCobj,ref_preview,md_preview,name_flag) allows
you to specify if the MPC controller has preview actions on the reference
and measured disturbance signals. If the flag ref_preview='on', then
matrices Br and Dr multiply the whole reference sequence:

Similarly if the flag md_preview='on', then matrices Br and Dr multiply
the whole measured disturbance sequence:

The optional input argument name_flag='names' adds state, input,
and output names to the created LTI object.

Examples To get the transfer function LTIcon from (ym,r) to u,

[sys,Br,Dr]=ss(MPCobj);
set(sys,'B',[sys.B,Br],'D',[sys.D,Dr]);

See Also mpc, set, tf, zpk

2-56

tf

Purpose Convert unconstrained MPC controller to linear transfer function

Syntax sys=tf(MPCobj)

Description The tf function computes the transfer function of the linear controller
ss(MPCobj) as an LTI system in tf form corresponding to the MPC
controller when the constraints are not active. The purpose is to use
the linear equivalent control in Control System Toolbox software for
sensitivity and other linear analysis.

See Also ss, zpk

2-57

trim

Purpose Compute steady-state value of MPC controller state for given inputs
and outputs

Syntax x=trim(MPCobj,y,u)

Description The trim function finds a steady-state value for the plant state vector
such that x=Ax+Bu, y=Cx+Du, or the best approximation of such an x in
a least squares sense, sets noise and disturbance model states at zero,
and forms the extended state vector.

See Also mpc, mpcstate

2-58

zpk

Purpose Convert unconstrained MPC controller to zero/pole/gain form

Syntax sys=zpk(MPCobj)

Description The zpk function computes the zero-pole-gain form of the linear
controller ss(MPCobj) as an LTI system in zpk form corresponding to
the MPC controller when the constraints are not active. The purpose is
to use the linear equivalent control in Control System Toolbox software
for sensitivity and other linear analysis.

See Also ss, tf

2-59

zpk

2-60

3

Block Reference

MPC Controller

Purpose Compute MPC control law

Library MPC Simulink Library

Description The MPC Controller block receives the current measured output,
reference signal, and measured disturbance signal, and outputs the
optimal manipulated variables by solving a quadratic program. The
block is based on an MPC object, which provides performance and
constraint specifications, as well as the sampling time of the block.

Dialog
Box

MPC controller
You must supply an MPC object that defines your controller.
There are two ways to do this. One is to enter the name of an

3-2

MPC Controller

existing MPC object in theMPC Controller edit box. (The object
must be in your base workspace.)

The other is to leave the MPC controller edit box empty and,
with the controller block connected to the plant, click the Design
button. This constructs a default MPC controller by obtaining a
linearized model from the Simulink® diagram. It also opens the
design tool so you can modify the default settings.

If you are designing a controller in the design tool, you can see
how well it works by running a closed-loop Simulink simulation
without exiting the tool. This makes it easier to tune controller
parameters.

Initial controller state
Initial state of the MPC controller. This must be a valid mpcstate
object. If none is supplied, the block uses the default steady-state
initial condition.

Reference signal
If you select the check box, the edit box to the right must
contain the name of a variable in your workspace that defines
the reference signal. This also enables the Look Ahead check
box. Selecting the Look Ahead check box anticipates reference
variations and usually improves reference tracking (see “Look
Ahead and Signals from the Workspace” in the Model Predictive
Control Toolbox User’s Guide). If you do not select the Reference
signal check box, the signal connected to the block ref inport
supplies the reference values.

Measured disturbance
Provides options for the measured disturbances (for feedforward
compensation) in the same way as for the reference signals,
above. If you don’t supply the measured disturbance here, the
signal connected to the block’s md inport supplies the measured
disturbance values.

3-3

MPC Controller

Enable input port for measured disturbance
This option adds an inport (labeled md) to which you can connect
measured disturbances and for which the controller will provide
feedforward compensation.

Enable input port for externally supplied manipulated variables
to plant

This check box lets you switch between MPC control and another
type of control (e.g., manual control) during a simulation. It adds
an inport (labeled ext.mv) to which you can connect the actual
manipulated variables the plant is receiving. The block uses
these in its internal state estimates. The following example shows
possible connections. See also the mpcbumpless demo.

If the inport is disabled, or it is enabled with no connected signal,
the MPC controller assumes that its output is adjusting the plant
input. If this is incorrect, the controller’s internal state estimate
will become inaccurate.

Bumpless Switching Between MPC and Another Controller

Enable input port for input and output limits
This check box adds inports to which you can connect time-varying
constraint specifications. Otherwise, the block uses the constant
constraint values stored within its MPC object. Example
connections appear below. See also the mpcvarbounds demo.

3-4

MPC Controller

When you enable this option, the block interprets an unconnected
limit inport, such as ymin in the example below, as an
unconstrained variable. Also, to prevent numerical difficulties the
block enforces a minimum separation of 1e-5 between lower and
upper bounds. Further, if a signal connected to a lower-bound
port exceeds that connected to the corresponding upper-bound
port, the block automatically uses the smaller signal as the lower
bound and vice versa.

Enable input port for externally supplied manipulated
variables to plant

This check box adds an inport labeled QP Switch. If this input
signal is zero, the controller behaves normally. If this input
becomes nonzero, it turns off the controller’s optimization
calculations and sets the controller output to zero. This saves
computational effort when the controller output is not needed,
e.g., the system has been placed in manual operation or another
controller has taken over. The controller continues to update its
internal state estimate in the usual way, however, so it is ready to
resume optimization calculations whenever the QP Switch signal
returns to zero.

3-5

MPC Controller

Note The MPC Controller block is a discrete-time block with
sampling time inherited from the MPC object. The MPC block has
direct feedthrough from measured outputs (mo), output references
(ref), and measured disturbances (md) to MPC-manipulated
variables (mv), and no direct feedthrough from externally supplied
manipulated variables (ext.mv) to MPC-manipulated variables
(mv).

See Also mpc, mpcstate

3-6

Multiple MPC Controllers

Purpose Simulate switching between multiple MPC controllers

Library MPC Simulink Library

Description The Multiple MPC Controllers block receives the current measured
output, reference signal, and measured disturbance signal, and solves a
quadratic program to calculate the optimal manipulated variables. It
also receives a switching signal that designates which of two or more
controllers is to perform the calculation. The block contains these
controllers as MPC objects, each of which is designed for a particular
operating region of a nonlinear plant.

3-7

Multiple MPC Controllers

Dialog
Box

MPC Object List
The table is an ordered list of MPC objects. The first row
designates the controller to be used when the switch input equals
one, the second designates the controller to be used when the

3-8

Multiple MPC Controllers

switch input equals two, and so on. These must refer to objects
that already exist in your base workspace.

Note After entering each MPC object name, type Enter. Also
type Enter after editing an object name.

Use the Add and Delete buttons to add and remove rows.
When deleting, indicate the row(s) to delete using the Delete It
checkbox.

When the edit box is empty and the block is connected to the plant,
clicking the Design button constructs a default MPC controller by
obtaining a linearized plant model from the Simulink diagram. It
also opens the design tool so you can modify the default behavior.

You can also start the design tool by selecting one or more MPC
objects using the Design It checkbox, and then clicking the
Design button. All selected MPC objects will be loaded into the
design tool where you can review and edit their properties.

Initial controller state
Initial state of each MPC object in the ordered list. Each must
be a valid mpcstate object. If none is supplied, the default is a
steady-state initial condition.

Reference signal
If you select the check box, the edit box to the right must
contain the name of a variable in your workspace that defines
the reference signal. This also enables the Look Ahead check
box. Selecting the Look Ahead check box anticipates reference
variations and usually improves reference tracking (see “Look
Ahead and Signals from the Workspace” in the Model Predictive
Control Toolbox User’s Guide). If you do not select the Reference
signal check box, the signal connected to the block ref inport
supplies the reference values.

3-9

Multiple MPC Controllers

Measured disturbance
Provides options for the measured disturbances (for feedforward
compensation) in the same way as for the reference signals,
above. If you don’t supply the measured disturbance here, the
signal connected to the block’s md inport supplies the measured
disturbance values.

Enable input port for measured disturbance
This option adds an inport (labeled md) to which you can connect
measured disturbances and for which the controller will provide
feedforward compensation.

Enable input port for externally supplied manipulated variables
to plant

This check box lets you switch between MPC control and another
type of control (e.g., manual control) during a simulation. It adds
an inport (labeled ext.mv) to which you can connect the actual
manipulated variables the plant is receiving. See MPC Controller
for more details.

Enable input port for input and output limits

This check box adds inports to which you can connect time-varying
constraint specifications. Otherwise, the block uses the constant
constraint values stored within its MPC object.

When you enable this option, the block interprets an unconnected
limit inport, such as ymin in the example below, as an
unconstrained variable. Also, to prevent numerical difficulties the
block enforces a minimum separation of 1e-5 between lower and
upper bounds. Further, if a signal connected to a lower-bound
port exceeds that connected to the corresponding upper-bound
port, the block automatically uses the smaller signal as the lower
bound and vice versa.

See MPC Controller for more details.

See Also mpc, mpcmove, mpcstate

3-10

4

Object Reference

• “MPC Controller Object” on page 4-2

• “MPC Simulation Options Object” on page 4-14

• “MPC State Object” on page 4-16

4 Object Reference

MPC Controller Object
All the parameters defining the MPC control law (prediction horizon, weights,
constraints, etc.) are stored in an MPC object, whose properties are listed in
the following table (MPC Controller Object on page 4-2).

MPC Controller Object

Property Description

ManipulatedVariables (or MV or
Manipulated or Input)

Input and input-rate upper and
lower bounds, ECR values, names,
units, and input target

OutputVariables (or OV or
Controlled or Output)

Output upper and lower bounds,
ECR values, names, units

DisturbanceVariables (or DV or
Disturbance)

Disturbance names and units

Weights Weights defining the performance
function

Model Plant, input disturbance, and
output noise models, and nominal
conditions.

Ts Controller’s sampling time

Optimizer Parameters for the QP solver

PredictionHorizon Prediction horizon

ControlHorizon Number of free control moves or
vector of blocking moves

History Creation time

Notes User notes (text)

UserData Any additional data

MPCData (private) Matrices for the QP problem and
other accessorial data

Version (private) Model Predictive Control Toolbox
version number

4-2

MPC Controller Object

ManipulatedVariables
ManipulatedVariables (or MV or Manipulated or Input) is an nu-dimensional
array of structures (nu = number of manipulated variables), one per
manipulated variable. Each structure has the fields described in the following
table (Structure ManipulatedVariables on page 4-3), where p denotes the
prediction horizon.

Structure ManipulatedVariables

Field Name Content Default

Min 1 to p dimensional vector of lower
constraints on a manipulated
variable u

-Inf

Max 1 to p dimensional vector of upper
constraints on a manipulated
variable u

Inf

MinECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the lower constraints on u

0

MaxECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the upper constraints on u

0

Target 1 to p dimensional vector of target
values for the input variable u

0

RateMin 1 to p dimensional vector of
lower constraints on the rate of a
manipulated variable u

-Inf if problem
is unconstrained,
otherwise -10

RateMax 1 to p dimensional vector of
upper constraints on the rate of a
manipulated variable u

Inf

RateMinECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the lower constraints on the rate
of u

0

4-3

4 Object Reference

Structure ManipulatedVariables (Continued)

Field Name Content Default

RateMaxECR 1 to p dimensional vector describing
the equal concern for the relaxation
of the upper constraints on the rate
of u

0

Name Name of input signal. This is
inherited from InputName of the LTI
plant model.

InputName of LTI
plant model

Units String specifying the measurement
units for the manipulated variable

''

Note Rates refer to the difference Δu(k)=u(k)-u(k-1). Constraints and weights
based on derivatives du/dt of continuous-time input signals must be properly
reformulated for the discrete-time difference Δu(k), using the approximation
du/dt Δu(k)/Ts.

OutputVariables
OutputVariables (or OV or Controlled or Output) is an ny-dimensional
array of structures (ny = number of outputs), one per output signal.
Each structure has the fields described in the following table (Structure
OutputVariables on page 4-4), where p denotes the prediction horizon.

Structure OutputVariables

Field Name Content Default

Min 1 to p dimensional vector of lower
constraints on an output y

-Inf

Max 1 to p dimensional vector of upper
constraints on an output y

Inf

4-4

MPC Controller Object

Structure OutputVariables (Continued)

Field Name Content Default

MinECR 1 to p dimensional vector describing
the equal concern for the relaxation of
the lower constraints on an output y

1

MaxECR 1 to p dimensional vector describing
the equal concern for the relaxation of
the upper constraints on an output y

1

Name Name of output signal. This is
inherited from OutputName of the LTI
plant model.

OutputName of LTI
plant model

Units String specifying the measurement
units for the measured output

''

Integrator Magnitude of integrated white
noise on the output channel (0=no
integrator)

[]

In order to reject constant disturbances due for instance to gain nonlinearities,
the default output disturbance model used in Model Predictive Control
Toolbox software is a collection of integrators driven by white noise on
measured outputs (see “Output Disturbance Model”in the Model Predictive
Control Toolbox User’s Guide). Output integrators are added according to
the following rule:

1 Measured outputs are ordered by decreasing output weight (in case
of time-varying weights, the sum of the absolute values over time is
considered for each output channel, and in case of equal output weight, the
order within the output vector is followed).

2 By following such order, an output integrator is added per measured
outputs, unless there is a violation of observability, or the user forces it by
zeroing the corresponding value in OutputVariables.Integrators).

By default, OutputVariables.Integrators is empty on all outputs.
This enforces the default action of Model Predictive Control Toolbox
software, namely add integrators on measured outputs, do not

4-5

4 Object Reference

add integrators on unmeasured outputs. By setting the entry of
OutputVariables(i).Integrators to zero, no attempt will be made to add
integrated white noise on the i-th output . On the contrary, by setting the
entry of OutputVariables(i).Integrators to one, an attempt will be made
to add integrated white noise on the i-th output (see getoutdist).

DisturbanceVariables
DisturbanceVariables (or DV or Disturbance) is an (nv+nd)-dimensional
array of structures (nv = number of measured input disturbances, nd =
number of unmeasured input disturbances), one per input disturbance.
Each structure has the fields described in the following table (Structure
DisturbanceVariables on page 4-6).

Structure DisturbanceVariables

Field Name Content Default

Name Name of input signal. This is
inherited from InputName of
the LTI plant model.

InputName of LTI plant
model

Units String specifying the
measurement units for the
manipulated variable

''

The order of the disturbance signals within the array DisturbanceVariables
is the following: the first nv entries relate to measured input disturbances, the
last nd entries relate to unmeasured input disturbances.

Note The Name properties of ManipulatedVariables, OutputVariables,
and DisturbanceVariables are read only. You can set signal names in the
Model.Plant.InputName and Model.Plant.OutputNameproperties of the
MPC object, for instance by using the method setname.

Weights
Weights is the structure defining the QP weighting matrices. Unlike the
InputSpecs and OutputSpecs, which are arrays of structures, weights is a

4-6

MPC Controller Object

single structure containing four fields. The values of these fields depend on
whether you are using the standard quadratic cost function (Equation (2–3))
or the alternative cost function (Equation (2–5)).

Standard Cost Function
The table below, Weights for the Standard Cost Function (MATLAB®

Structure) on page 4-7, lists the content of the four fields where p denotes the
prediction horizon, nu the number of manipulated variables, ny the number of
output variables.

The fields ManipulatedVariables, ManipulatedVariablesRate,
and OutputVariables are arrays with nu, nu, and ny columns,
respectively. If weights are time invariant, then ManipulatedVariables,
ManipulatedVariablesRate, and OutputVariables are row vectors.
However, for time-varying weights, each field is a matrix with up to p
rows. If the number of rows is less than the prediction horizon, p, the object
constructor duplicates the last row to create a matrix with p rows.

Weights for the Standard Cost Function (MATLAB Structure)

Field Name Content Default

ManipulatedVariables (or MV or
Manipulated or Input)

(1 to p)-by-nu dimensional array
of input weights

zeros(1,nu)

ManipulatedVariablesRate (or
MVRate or ManipulatedRate or
InputRate)

(1 to p)-by-nu dimensional array
of input-rate weights

0.1*ones(1,nu)

OutputVariables (or OV or
Controlled or Output)

(1 to p)-by-ny dimensional array
of output weights

1 (The default for output
weights is the following:
if , all outputs
are weighted with unit
weight; if nu<ny, nu
outputs are weighted
with unit weight (with
preference given to
measured outputs), while
the remaining outputs
receive zero weight.)

4-7

4 Object Reference

Weights for the Standard Cost Function (MATLAB Structure) (Continued)

Field Name Content Default

ECR Weight on the slack variable ε
used for softening the constraints

1e5*(max weight)

The default ECR weight is 105 times the largest weight specified in
ManipulatedVariables, ManipulatedVariablesRate, and OutputVariables.

Note All weights must be greater than or equal to zero. If all weights on
manipulated variable increments are strictly positive, the resulting QP
problem is always strictly convex. If some of those weights are zero, the
Hessian matrix of the QP problem may become only positive semidefinite. In
order to keep the QP problem always strictly convex, if the condition number
of the Hessian matrix KΔU is larger than 10

12, the quantity 10*sqrt(eps) is
added on each diagonal term. This may only occur when all input rates are
not weighted (WΔu=0) (see “Cost Function” in the Model Predictive Control
Toolbox User’s Guide).

Alternative Cost Function
You can specify off-diagonal Q and R weight matrices in the cost function.
To accomplish this, you must define the fields ManipulatedVariables,
ManipulatedVariablesRate, and OutputVariables as cell arrays, each
containing a single positive-semi-definite matrix of the appropriate size.
Specifically, OutputVariables must be a cell array containing the ny-by-ny Q
matrix, ManipulatedVariables must be a cell array containing the nu-by-nu
Ru matrix, and ManipulatedVariablesRate must be a cell array containing
the nu-by-nu matrix (see Equation (2–5)) and the demo mpcweightsdemo).
You can abbreviate the field names as shown in Weights for the Standard
Cost Function (MATLAB® Structure) on page 4-7. You can also use diagonal
weights (as defined in Weights for the Standard Cost Function (MATLAB®

Structure) on page 4-7) for one or more of these fields. If you omit a field, the
object constructor uses the defaults shown in Weights for the Standard Cost
Function (MATLAB® Structure) on page 4-7.

For example, you can specify off-diagonal weights, as follows

4-8

MPC Controller Object

MPCobj.Weights.OutputVariables={Q};
MPCobj.ManipulatedVariables={Ru};
MPCobj.ManipulatedVariablesRate={Rdu};

where Q=Q. Ru=Ru, and Rdu= are positive semidefinite matrices.

Note You cannot specify off-diagonal time-varying weights.

Model
The property Model specifies plant, input disturbance, and output noise
models, and nominal conditions, according to the model setup described in
“Model Used for State Estimation” in the Model Predictive Control Toolbox
User’s Guide. It is specified through a structure containing the fields reported
in Structure Model Describing the Models Used by MPC on page 4-9.

Structure Model Describing the Models Used by MPC

Field Name Content Default

Plant LTI model (or
IDMODEL) of the
plant

No default

Disturbance LTI model describing
color of input
disturbances

An integrator on each
Unmeasured input channel

Noise LTI model describing
color of plant output
measurement noise

Unit white noise on each
measured output = identity
static gain

Nominal Structure containing
the state, input,
and output values
where Model.Plant is
linearized

See Nominal Values at
Operating Point on page
4-11.

4-9

4 Object Reference

Note Direct feedthrough from manipulated variables to any output in
Model.Plant is not allowed. See “Prediction Model” in the Model Predictive
Control Toolbox User’s Guide.

The type of input and output signals is assigned either through the
InputGroup and OutputGroup properties of Model.Plant, or, more
conveniently, through function setmpcsignals, according to the nomenclature
described in Input Groups in Plant Model on page 4-10 and Output Groups
in Plant Model on page 4-10.

Input Groups in Plant Model

Name Value

ManipulatedVariables (or MV or
Manipulated or Input)

Indices of manipulated variables

MeasuredDisturbances (or MD or
Measured)

Indices of measured disturbances

UnmeasuredDisturbances (or UD or
Unmeasured)

Indices of unmeasured disturbances

Output Groups in Plant Model

Name Value

MeasuredOutputs (or MO or
Measured)

Indices of measured outputs

UnmeasuredOutputs (or UO or
Unmeasured)

Indices of unmeasured outputs

By default, all inputs are manipulated variables, and all outputs are
measured.

4-10

MPC Controller Object

Note With this current release, the InputGroup and OutputGroup properties
of LTI objects are defined as structures, rather than cell arrays (see the
Control System Toolbox documentation for more details).

The structure Nominal contains the nominal values for states, inputs, outputs
and state derivatives/differences at the operating point where Model.Plant
was linearized. The fields are reported in Nominal Values at Operating Point
on page 4-11 (see “Offsets” in the Model Predictive Control Toolbox User’s
Guide).

Nominal Values at Operating Point

Field Description Default

X Plant state at operating point 0

U Plant input at operating point, including
manipulated variables, measured and
unmeasured disturbances

0

Y Plant output at operating point 0

DX For continuous-time models, DX is the state
derivative at operating point: DX=f(X,U). For
discrete-time models, DX=x(k+1)-x(k)=f(X,U)-X.

0

Ts
Sampling time of the MPC controller. By default, if Model.Plant is a
discrete-time model, Ts=Model.Plant.ts. For continuous-time plant models,
you must specify a sampling time for the MPC controller.

Optimizer
Parameters for the QP optimization. Optimizer is a structure with the fields
reported in the following table (Optimizer Properties on page 4-12).

4-11

4 Object Reference

Optimizer Properties

Field Description Default

MaxIter Maximum number of iterations
allowed in the QP solver

200

Trace On/off 'off'

Solver QP solver used (only 'ActiveSet') 'ActiveSet'

MinOutputECR Minimum positive value allowed for
OutputMinECR and OutputMaxECR

1e-10

MinOutputECR is a positive scalar used to specify the minimum allowed ECR
for output constraints. If values smaller than MinOutputECR are provided in
the OutputVariables property of the MPC objects a warning message is
issued and the value is raised to MinOutputECR.

PredictionHorizon
PredictionHorizon is an integer value expressing the number p of sampling
steps of prediction.

ControlHorizon
ControlHorizon is either a number of free control moves, or a vector of
blocking moves (see “Optimization Variables” in the Model Predictive Control
Toolbox User’s Guide).

History
History stores the time the MPC controller was created.

Notes
Notes stores user’s notes as a cell array of strings.

UserData
Any additional data stored within the MPC controller object.

4-12

MPC Controller Object

MPCData
MPCData is a private property of the MPC object used for storing intermediate
operations, QP matrices, internal flags, etc. See getmpcdata and setmpcdata.

Version
Version is a private property indicating the Model Predictive Control Toolbox
version number.

Construction and Initialization
An MPC object is built in two steps. The first step happens at construction
of the object when the object constructor mpc is invoked, or properties are
changed by a set command. At this first stage, only basic consistency checks
are performed, such as dimensions of signals, weights, constraints, etc. The
second step happens at initialization of the object, namely when the object
is used for the first time by methods such as mpcmove and sim, that require
the full computation of the QP matrices and the estimator gain. At this
second stage, further checks are performed, such as a test of observability of
the overall extended model.

Informative messages are displayed in the command window in both phases,
you can turn them on or off using the mpcverbosity command.

4-13

4 Object Reference

MPC Simulation Options Object
The mpcsimopt object type contains various simulation options for simulating
an MPC controller with the command sim. Its properties are listed in the
following table (MPC Simulation Options Properties on page 4-14).

MPC Simulation Options Properties

Property Description

PlantInitialState Initial state vector of the plant model
generating the data.

ControllerInitialState Initial condition of the MPC controller. This
must be a valid @mpcstate object.

UnmeasuredDisturbance Unmeasured disturbance signal entering
the plant.

InputNoise Noise on manipulated variables.

OutputNoise Noise on measured outputs.

RefLookAhead Preview on reference signal ('on' or 'off').

MDLookAhead Preview on measured disturbance signal
('on' or 'off').

Constraints Use MPC constraints ('on' or 'off').

Model Model used in simulation for generating the
data.

StatusBar Display the wait bar ('on' or 'off').

MVSignal Sequence of manipulated variables (with
offsets) for open-loop simulation (no MPC
action).

OpenLoop Perform open-loop simulation.

The command

SimOptions=mpcsimopt(mpcobj)

4-14

MPC Simulation Options Object

returns an empty @mpcsimopt object. You must use set / get to change
simulation options.

UnmeasuredDisturbance is an array with as many columns as unmeasured
disturbances, InputNoise and MVSignal are arrays with as many columns as
manipulated variables, OutputNoise is an array with as many columns as
measured outputs. The last sample of the array is extended constantly over
the horizon to obtain the correct size.

Note Nonzero values of ControllerInitialState.LastMove are only
meaningful if there are constraints on the increments of the manipulated
variables.

The property Model is useful for simulating the MPC controller under model
mismatch. The LTI object specified in Model can be either a replacement for
Model.Plant, or a structure with fields Plant, Nominal. By default, Model
is equal to MPCobj.Model (no model mismatch). If Model is specified, then
PlantInitialState refers to the initial state of Model.Plant and is defaulted
to Model.Nominal.x.

If Model.Nominal is empty, Model.Nominal.U and Model.Nominal.Y are
inherited from MPCobj.Model.Nominal. Model.Nominal.X/DX is only
inherited if both plants are state-space objects with the same state dimension.

4-15

4 Object Reference

MPC State Object
The mpcstate object type contains the state of an MPC controller. Its
properties are listed in MPC State Object Properties on page 4-16.

MPC State Object Properties

Property Description

Plant Array of plant states. Values are absolute, i.e., they
include possible state offsets (cf.Model.Nominal.X).

Disturbance Array of states of unmeasured disturbance models. This
contains the states of the input disturbance model and,
appended below, the states of the unmeasured output
disturbances model.

Noise Array of states of measurement noise model.

LastInput Array of previous manipulated variables u(k-1). Values
are absolute, i.e., they include possible input offsets (cf.
Model.Nominal.U).

The command

mpcstate(mpcobj)

returns a zero extended initial state compatible with the MPC object mpcobj,
and with mpcobj.Plant and mpcobj.LastInput initialized at the nominal
values specified in mpcobj.Model.Nominal.

4-16

Index

IndexC
constraints

specification 4-3

D
DC gain 2-2
disturbances

input model 2-10
internal state 2-28
output model 2-13
type definition 2-45

E
estimation 2-40

gain 2-40
model extraction 2-7
See also observer

I
inputs

disturbance model 2-10

M
memory 2-4
models

input disturbance 2-10
mismatch 2-26
mismatch in simulations 4-15
output disturbance retrieval 2-13

MPC Controller, Simulink
initial state 3-3

MPC state 2-28
mpctool 2-29

N
nominal conditions

structure 4-11

O
observer 4-13

gain 2-40
initialization 4-13
model 2-7
See also estimation

offset 4-11
optimal trajectory 2-20
outputs

disturbance model retrieval 2-13

P
plants

initial state 4-14
mismatch 2-26
mismatch in simulations 4-15

S
sensitivity 2-35
Simulink

block 3-2
initial state 3-9

state
controller, definition 2-28
observer 2-7

See also estimation
states

initial 4-14
steady-state 2-2

U
unconstrained control 2-2
unmeasured disturbances

input model 2-10
output model 2-13

Index-1

Index

W
weights

specification 4-6

Index-2

	toc
	Function Reference
	General
	Creating MPC Controllers
	Data Extraction
	Conversions
	Analysis
	Controller Design
	QP Solver
	Simulink

	Functions – Alphabetical List
	Block Reference
	Object Reference
	MPC Controller Object
	ManipulatedVariables
	OutputVariables
	DisturbanceVariables
	Weights
	Standard Cost Function
	Alternative Cost Function

	Model
	Ts
	Optimizer
	PredictionHorizon
	ControlHorizon
	History
	Notes
	UserData
	MPCData
	Version
	Construction and Initialization

	MPC Simulation Options Object
	MPC State Object

	Index

	tables
	MPC Controller Object
	Structure ManipulatedVariables
	Structure OutputVariables
	Structure DisturbanceVariables
	Weights for the Standard Cost Function (MATLAB Structure)
	Structure Model Describing the Models Used by MPC
	Input Groups in Plant Model
	Output Groups in Plant Model
	Nominal Values at Operating Point
	Optimizer Properties
	MPC Simulation Options Properties
	MPC State Object Properties

